Name:___

2.

Work in groups to answer as many problems as you can. Ask questions if you get stuck. The numbers used on this worksheet may require a calculator. Keep in mind that numbers you will have on exams will be nice enough to do without a calculator.

1. Calculate the following:

	8				
(a) $\log_5(25) =$		(d) $\log_5(1) =$		(g) $\log_2(32) =$	
	Answer:		Answer:		Answer:
(b) $\log_3(1) =$		(e) $\log_2(8) =$		(h) $\log_2(32) =$	
	Answer:		Answer:		Answer:
(c) $\log_{16} 4 =$		(f) $\log_7\left(\frac{1}{7}\right) =$		(i) $\log_3\left(\frac{1}{9}\right) =$	
	Answer:		Answer:		Answer:
Find the value of a .					
(a) $\log_a(64) = 6$		(c) $\log_4\left(\frac{1}{8}\right) = a$		(e) $\log_7(a) = 3$	
	Answer:		Answer:		Answer:

(b) $\log_9(a) = -\frac{1}{2}$ (d) $\log_9\left(\frac{1}{81}\right) = a$ (f) $\log_a(36) = 2$

Answer: Answer:	
-----------------	--

- 3. Write the following expressions in terms of logs of x, y and z. (Note the bases are not specified as the laws work for any base)
 - (a) $\log(x^2 y)$ (e) $\log\left(\frac{x}{yz}\right)$

Answer:_____

(b) $\log\left(\frac{x^3y^2}{z}\right)$

Answer:_____

(c) $\log\left(\frac{\sqrt{x}\sqrt[3]{y^2}}{z^4}\right)$

Answer:_____

(d) $\log(xyz)$

(h) $\log(x\sqrt{z})$

(g) $\log\left((x)^{\frac{1}{3}}\right)$

Answer:_____

Answer:_____

(f) $\log\left(\left(\frac{x}{y}\right)^2\right)$

Answer:_____

Answer:_

Answer:_____

Cont.

(i)
$$\log \left(\frac{\delta \overline{x}}{\delta yz}\right)$$
 (k) $\log \left(x \sqrt{\frac{\delta \overline{x}}{z}}\right)$
Answer: ______ Answer: ______
(j) $\log \left(\sqrt[\delta]{\frac{x^2y^2}{z^4}}\right)$ (l) $\log \left(\sqrt{\frac{xy^2}{z^5}}\right)$
Answer: ______
True or False? (Note the bases are not specified as the laws work for any base)

(a) $\log\left(\frac{x}{y^3}\right) = \log(x) - 3\log(y)$

4.

(b) $\log(a - b) = \log(a) - \log(b)$

Answer:_____

(c) $\log(x^k) = k \cdot \log(x)$	(f) $(\log(a))^k = k \cdot \log(a)$	
Answer:(d) $\log(a) \cdot \log(b) = \log(a + b)$	(g) $\log_a (a^a) = a$	Answer:
Answer: (e) $\frac{\log(a)}{\log(b)} = \log(a - b)$	(h) $-\log\left(\frac{1}{x}\right) = \log(x)$	Answer:
Answer:5. Combine the given expression into one single logarithm. (a) $\log_2(A) + \log_2(B) - 2\log_2(C)$	(b) $4\log_6(y) - \frac{1}{4}\log_6(z)$	Answer:
Answer:		Answer:

(c) $4\log_2(x) - \frac{1}{3}\log_2(x^2 + 1)$	(g) $2\log_8(x+1)_2\log_8(x-1)$
Answer:	Answer:
(d) $\log(5) + 2\log(x) + 3\log(x^2 + 5)$	(h) $\log_5(x^2 - 1) - \log_5(x - 1)$
Answer:	Answer:

(e) $3\log_2(A) + 2\log_2(B+1)$

(i) $\frac{1}{2}\log_4(y+1) - \frac{1}{2}\log_4(x-1)$

Answer:_____

(f) $4\log_3(2x-1) - \frac{1}{2}\log_3((x+1)^2)$

(j) $4\log(x) - \frac{1}{3}\log(x^2 + 1) + 2\log(x - 1)$

Answer:____

Answer:_____

6. Solve the following logarithmic equations. (Note, if the base of the logarithm is not specified, it is not important in finding the solution)

Worksheet 8

(a) $\log(x) = -3$ (e) $\log_3(x+25) - \log_3(x-1) = 3$

Answer:_____

(b) $\log_{10}(3x-2) = 2$

(f) $\log_9(x-5) + \log_9(x+3) = 1$

Answer:_____

(c) $2\log(x) = \log(2) + \log(3x - 4)$

(g) $\log(x) + \log(x - 3) = 1$

Answer:_____

(d) $\log(x) + \log(x - 1) = \log(4x)$

(h) $\log_2(x-2) + \log_2(x+1) = 2$

Answer:_____

Answer:____

Answer:____

The End.

Answer:____