Name: \qquad

Work in groups to answer as many problems as you can. Ask questions if you get stuck. The numbers used on this worksheet may require a calculator. Keep in mind that numbers you will have on exams will be nice enough to do without a calculator.

$\log _{a}(x y)=\log _{a}(x)+\log _{a}(y)$	$\log _{a}\left(\frac{x}{y}\right)=\log _{a}(x)-\log _{a}(y)$	$\log _{a}(1)=0$	$\log _{a}\left(x^{n}\right)=n \log _{a}(x)$

1. Calculate the following:
(a) $\log _{5}(25)=$
(d) $\log _{5}(1)=$
(g) $\log _{2}(32)=$

Answer: \qquad
Answer:
\qquad Answer: \qquad
(b) $\log _{3}(1)=$
(e) $\log _{2}(8)=$
(h) $\log _{2}(32)=$

Answer: \qquad Answer: \qquad Answer: \qquad
(c) $\log _{16} 4=$
(f) $\log _{7}\left(\frac{1}{7}\right)=$
(i) $\log _{3}\left(\frac{1}{9}\right)=$

Answer: \qquad Answer: \qquad Answer: \qquad
2. Find the value of a.
(a) $\log _{a}(64)=6$
(c) $\log _{4}\left(\frac{1}{8}\right)=a$
(e) $\log _{7}(a)=3$

Answer: \qquad Answer: \qquad Answer: \qquad
(b) $\log _{9}(a)=-\frac{1}{2}$
(d) $\log _{9}\left(\frac{1}{81}\right)=a$
(f) $\log _{a}(36)=2$
\qquad Answer: \qquad Answer: \qquad
3. Write the following expressions in terms of logs of x, y and z. (Note the bases are not specified as the laws work for any base)
(a) $\log \left(x^{2} y\right)$
(e) $\log \left(\frac{x}{y z}\right)$

Answer: \qquad
(b) $\log \left(\frac{x^{3} y^{2}}{z}\right)$

Answer:
\qquad
(c) $\log \left(\frac{\sqrt{x} \sqrt[3]{y^{2}}}{z^{4}}\right)$

Anser
(f) $\log \left(\left(\frac{x}{y}\right)^{2}\right)$
(i) $\log \left(\frac{\sqrt[3]{x}}{\sqrt[3]{y z}}\right)$
(k) $\log \left(x \sqrt{\frac{\sqrt{x}}{z}}\right)$

Answer: \qquad Answer:
(j) $\log \left(\sqrt[4]{\frac{x^{3} y^{2}}{z^{4}}}\right)$
(l) $\log \left(\sqrt{\frac{x y^{2}}{z^{8}}}\right)$

Answer: \qquad Answer: \qquad
4. True or False? (Note the bases are not specified as the laws work for any base)
(a) $\log \left(\frac{x}{y^{3}}\right)=\log (x)-3 \log (y)$
(b) $\log (a-b)=\log (a)-\log (b)$
(c) $\log \left(x^{k}\right)=k \cdot \log (x)$
(f) $(\log (a))^{k}=k \cdot \log (a)$

Answer:

\qquad
(d) $\log (a) \cdot \log (b)=\log (a+b)$
(g) $\log _{a}\left(a^{a}\right)=a$

Answer: \qquad Answer: \qquad
(e) $\frac{\log (a)}{\log (b)}=\log (a-b)$
(h) $-\log \left(\frac{1}{x}\right)=\log (x)$

Answer: \qquad Answer: \qquad
5. Combine the given expression into one single logarithm.
(a) $\log _{2}(A)+\log _{2}(B)-2 \log _{2}(C)$
(b) $4 \log _{6}(y)-\frac{1}{4} \log _{6}(z)$
(c) $4 \log _{2}(x)-\frac{1}{3} \log _{2}\left(x^{2}+1\right)$
(g) $2 \log _{8}(x+1)_{2} \log _{8}(x-1)$

Answer:

\qquad Answer:
(d) $\log (5)+2 \log (x)+3 \log \left(x^{2}+5\right)$
(h) $\log _{5}\left(x^{2}-1\right)-\log _{5}(x-1)$

Answer: \qquad Answer: \qquad
(e) $3 \log _{2}(A)+2 \log _{2}(B+1)$
(i) $\frac{1}{2} \log _{4}(y+1)-\frac{1}{2} \log _{4}(x-1)$

Answer: \qquad Answer:
(f) $4 \log _{3}(2 x-1)-\frac{1}{2} \log _{3}\left((x+1)^{2}\right)$
(j) $4 \log (x)-\frac{1}{3} \log \left(x^{2}+1\right)+2 \log (x-1)$

Answer:
Answer:
6. Solve the following logarithmic equations. (Note, if the base of the logarithm is not specified, it is not important in finding the solution)
(a) $\log (x)=-3$
(e) $\log _{3}(x+25)-\log _{3}(x-1)=3$

Answer:

\qquad Answer:
(b) $\log _{10}(3 x-2)=2$
(f) $\log _{9}(x-5)+\log _{9}(x+3)=1$

Answer: \qquad Answer:
(c) $2 \log (x)=\log (2)+\log (3 x-4)$
(g) $\log (x)+\log (x-3)=1$

Answer: \qquad Answer:
(d) $\log (x)+\log (x-1)=\log (4 x)$
(h) $\log _{2}(x-2)+\log _{2}(x+1)=2$

Answer: \qquad Answer:

